If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-19u-5=305
We move all terms to the left:
4u^2-19u-5-(305)=0
We add all the numbers together, and all the variables
4u^2-19u-310=0
a = 4; b = -19; c = -310;
Δ = b2-4ac
Δ = -192-4·4·(-310)
Δ = 5321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{5321}}{2*4}=\frac{19-\sqrt{5321}}{8} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{5321}}{2*4}=\frac{19+\sqrt{5321}}{8} $
| -2n+2-6n=-14 | | 100-x=1.4142x | | 4u^2-19u-5=2 | | -17=1+4m+2m | | 2+5v-4=-12 | | 12=x+5+6x | | -(2x-3)+5(-x+3)=67 | | 0.12*x*(1-x)=0 | | 59=4c−-23 | | 0.12*x*(1-x^2)=0 | | 4+3x=8x+4 | | 4=10s−16 | | x(x+20)=800 | | s/3+ 11=14 | | 3x2+x+10=0 | | 42-2p=12+4p | | X+(.10xX)=37910 | | Y=5x+1500 | | X+.10xX=37910 | | 1/5x+1/3=3(3/4x+3) | | W+9/2+3w+5/8=13 | | 2a=3a+1=5a-12 | | 4(v-1)=-(4v+5)-32 | | r+(-15)=25 | | 0.06z+0.18=-0.42 | | 18*4=6x | | -4/5s+3=6 | | 3a+1=5a-12 | | 6y+4=81-y | | X{/44=2u | | 19-8x=4(5-2x)-1 | | 3(x+5)=1/9 |